本节“圆的面积”的教学,力求使学生在获得知识的同时,创新意识、探究能力和实践能力都得到发展。
一、故事激趣,渗透“转化”
本课开始,我引导学生回忆简述了“曹冲称象”的故事,并结合回忆上学期探究平行四边形、三角形、梯形面积的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、演示操作,加深理解
当学生通过第一个操作活动,得出圆的面积是半径平方的3倍多一些,与学生谈话:刚才通过数方格的方法我们研究出圆的面积是半径平方的3倍多一些,那么怎样才能精确的计算出圆的面积呢?让我们来做个实验。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。
这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。
在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。
圆面积的教学分估算、推导和应用三部分,重点是圆面积公式的推导和应用,在推导过程中渗透“化曲为直”的转化思想,重视学生动手操作能力的培养。新学期、新班级、新学生,我选择了新教法。反思本节课的教学,以下几方面较以前有所改进:
关注学生已经的知识基础,重视“转化”思想的渗透。由于圆是平面上的曲线图形,受思维定势影响,学生难以转化成学过的平面图形,所以 在学习新知前,先引导学生回忆长方形、平行四边形等平面图形面积公式的推导方法,唤醒学生已有的知识积淀,再现“ 转化” 是探究新识、解决数学问题的最常用的好方法,为推导圆面积公式做了很好的铺垫。同时结合上节课面积的估算教学,让学生经明确:只要把圆内接正方形分割的边数越多,就越接近圆,这样很自然地引导学生思考转化的方法。
动手操作和体验让课堂富有了灵动的色彩。由于没有学具,课前就分组让学生动手把所画的圆等分成不同的等份,课堂上学生便有了更多的操作、交流空间。学生为了验证自己的猜想,操作过程更是小心翼翼,生怕有半点闪失,操作结果:有的拼成三角形、有的拼成梯形、有的拼成平行四边开、有的拼成长方形。拼的过程让学生亲历、体验了“化曲为直”的思想,同时明确了:把一个圆平均分成的份数越多,拼成的图形就越接近长方形;拼成后的图形与圆的面积相等,只是周长发生了变化。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,给课堂增添了灵动的色彩。
自行设置习题,学生表现多姿多彩。推导完公式以后,我并没有直接出示例题,而是让学生根据公式说出求圆面积必须具备的条件及应该注意的问题(已知半径、一个数平方的计算)。紧接着让学生说出一步、二步、三步计算圆面积所必备的条件,这种练习方式不仅复习了以前学过的知识,而且更有效地激活了学生的思维,让学生的思维在交流中碰撞,在碰撞中发散,在想象中得以提升,同时也为下节课的学习打响了前奏。
不足:
1 、学生方面:有些学生在计算一个数的平方时,会算成用一个数乘以2 ;对于整十数、整百数的平方计算,出现多零或少零的现象;对于较大数的计算不会进行简便计算;有学生使用计算器;学困生有抄作业现象。
2 、教师方面:课堂评价语言较单一;板书字体有些草,忘记板书课题。
措施:
1 、加强学生口算基本功训练,培养运算技能、使其掌握运算技巧;经常与家长联系,提醒学生不用计算器;加强对学困生的辅导。
2 、丰富自己的评价语言,注意评价语言的激励性和导向性。