等差数列教学反思

时间:2021-08-31

等差数列教学反思范文(精选6篇)

  作为一名到岗不久的人民教师,课堂教学是重要的任务之一,借助教学反思我们可以拓展自己的教学方式,那要怎么写好教学反思呢?以下是小编帮大家整理的等差数列教学反思范文(精选6篇),欢迎大家分享。

  等差数列教学反思1

  对于高考班来说,现在的主要任务就是储备足够的知识和经验,迎接高考。而最近几年的高考题中,创新题多数都是数列部分的题目,所以,本节课的主要教学目标就是复习《等差数列》的相关知识点,掌握高考常考题型,并能达到举一反三。

  这节课我是这样安排的:首先向同学们总结了近五年的高考题中数列部分的题目所占分值的平均分,意在引起同学们的重视,然后展示本节课的复习目标,让同学们能够了解考试大纲的要求,第三让同学们总结本节的知识要点,并利用一定的时间记忆,主要是记忆公式,因为这部分的题目主要是选择适当的公式解决问题,第四是典型例题,我总结了三种例题,也是高考易考题型。

  根据本课学习目标,我把学生的自主探究与教师的适时引导有机结合,把知识点通过各种方式展现在学生面前,使教学过程零而不散,教学活动多而不乱,学生在轻松愉悦的氛围中学习知识,拓宽视野。本节课的成功之处:

  1.在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。

  2.教学方式符合教学对象。复习课就是要以总结的方式对学过的知识加以巩固,同学们通过本节课的复习目标,很方便的了解了重难点,通过典型例题直观的了解考试要点。

  不足之处:

  1.时间安排欠合理。在让同学们背公式的过程中花费时间太长。课后反思,如果当初就把几个公式展示出来,让同学们背,然后通过教师考察或小组成员之间考察,可能会达到事半功倍的效果。

  2.“放”的力度不够。在分析典型例题时,总担心个别基础不好的同学不会,本来可以由学生阐述解题方法,也由我来说,所以学生的主动权给的不够多。

  在今后的教学中,我会注意给学生足够的时间和空间,搭建学生展示自己的平台,要充分相信学生的实力,合理安排教学时间。

  总之,认认真真准备一堂课,课后会有很多感触,及时整理自己教学上的得与失,如果每一节课都这样精心准备,每一节课后都认真反思,确实对自己今后的教学很多的启示。

  等差数列教学反思2

  等差数列这节我们已经学习完了,回过头清理一下,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求转化为首项和公差来处理;能使用简单的性质;对五个基本量之间的转化比较灵活;课堂展示、质疑气氛活跃。

  重要的一个原因是数列主要解决是数的问题,求数列的通项实质是寻找一列数所具有的规律,这一部分与学生以前学过的找规律问题类似,因而学起来轻松有兴趣,他们也有对其进行探究的热情,如,学生由定义推导出通项公式an=a1+(n—1)d,an—am=(n—m)d,若m+n=p+q,则an+am=ap+aq等。培养了学生的推理论证能力和思维的严谨性。学生解题具有一定的规范性。但是也存在着一些不尽人意的地方,学生对题目中的条件不能用在恰当的位置,计算能力有待进一步培养,对证明一个数列是等差数列,受课本例题的影响,过程复杂,写成an+1—an=an—an—1,没有抓住定义的内涵,将问题的形式简单化,写成an+1—an=常数,因而在做题时出现3an+1—3an=2,这样的式子看不出此数列是等差数列。对等差数列前n项和的含义的理解不够透彻,导致奇数项和与偶数项和不能正确表达。

  对求等差数列前n项的最值问题,有求和公式求最值比较熟练,但从通项研究最值问题不够熟练。针对以上问题,我们将在后续的等比数列的教学中有意识地进行针对性的训练,力求使学生对重点内容和重要方法熟练掌握。

  等差数列教学反思3

  本节课是学习等差数列的第一课,注重了学生基本知识和基本能力的培养。理解等差数列的概念,了解等差数列的通项公式推导过程,培养学生观察、分析、归纳、推理的能力;通过练习,提高学生的分析问题和解决问题的能力。

  本节课,学生对定义和通项公式掌握不错,对一些基本问题能按照要求转化为首项和公差来处理。能使用简单的性质;对基本量之间的转化比较灵活;课堂展示、质疑气氛活跃。重要的一个原因是数列主要解决是数的问题,求数列的通项实质是寻找一列数所具有的规律,这一部分与学生以前学过的找规律问题类似,因而学习起来轻松有兴趣,他们也有对其进行探究的热情,如学生用定义推导出通项公式ana1?(n1)dnN*,培养了学生的推理论证能力和思维的严谨性。学生的解题具有一定的规范性。

  本节课,我始终注重“以生为本”,打破教师奖,学生听的传统教学模式,一开始让学生带着问题自主学习,自己去发现问题;再通过合作探究,以集体的智慧去解决问题;最后教师加以引导、点评、小结,效果良好。

  本节课,学生的学习积极性很高涨,但是设计教学的成面与学生的知识面还有一定的的差距不然可以使学生的学习兴趣进一步高涨,在以后的教学中,除了备好教材外,还要备好学生。因为,一堂好课不是看老师讲的有多好,而是看学生学得有多好。

  本节课,教师有饱满的情绪去激励学生,感染学生,创设良好的课堂心理气氛。因为轻松、愉悦的学习环境可以诱发学生的学生的学习兴趣,开发学生的学习潜能,从而更好地帮助他们接受新知识,并在获得新知识的基础上,形成创造性学习能力。教师起到一个引导作用,教学有法,教无定法,相信只要我们大胆探索,勇于尝试,课堂教学一定会更精彩!

  等差数列教学反思4

  探究式教学走进课堂为学生的学习提供了多样化的.活动方式,这里我充分利用多媒体手段,并采用了学生朗读,小组讨论合作交流并汇报成果,个别做答,集体做答,学生演板,学生说教师写等方法,感觉学生对定义和通项公式掌握不错,对一些基本问题,能按照要求利用等差数列的通项公式知三求一,体会方程的思想。在推导等差数列的通项公式时选用了不完全归纳法与叠加法,培养了学生的推理论证能力,强调了思维的严谨性。不过在教学中还是存在一些不足:

  1、在回答等差数列的特点时,有的同学会说“前一项与后一项的差为常数”,那么我们讲数列从函数的观点来看是当自变量从小到大的依次取值时,所对应的一列函数值,所以我们以从前往后发展的眼光来看用“后一项与前一项的'差为常数”更为妥当。

  2、“如果a,A,b三个数成等差数列,这时我们称A为a与b的等差中项”。其实A也是b与a的等差中项,即b,A,a三个数成等差数列。

  静下心来思考,在今后的教学中其实还应该注意:

  1、在证明等差数列时,学生往往用有限的几个连续两项的差为常数就得到此数列为等差数列的结论,其实这是一种不完全的归纳,是由特殊到一般,这种方法是不严密的。应该用等差数列的数学表达式来证明。怎样用等差数列的数学表达式来证明等差数列还需要利用课堂时间进行专门训练,因为在高考有关数列的考题中往往第一问就是用定义证明等差数列。

  2、用数学建模解决实际问题时绝不是单纯的几个计算而已,一定要强调格式,解应用题,数学模型一定要交代,而且要交代清楚,平时的训练中不能忽略这个问题,在对答案时要把文字部分反复几遍要学生用笔记在解答过程中,这样他们才能引起重视,以后学习解概率题时不会丢掉必要的文字叙述。

  等差数列教学反思5

  高三一轮复习,重在夯基释疑,培养和提高学生运用知识、解决问题的能力。本节课以学生为主体,教师为主导,充分调动了学生的积极性。教师教态自然,亲和力好,课堂气氛融洽。教学环节的设置松弛有度,从例题入手,探索实验,概括提炼,综合应用,步骤层次感强,学生参与度高,老师指导有方,引导得法,学生能充分体会成功的喜悦,从而促进学生学习的兴趣。

  1.选题针对性强,点评到位

  选材取自学生练习,针对性强,内容相对集中;从学生问题的点评答疑中,提炼结论,符合从具体到抽象的认知规律。

  2.充分发挥学生学习的自主性

  学生在课堂上体现了高度的参与和热情。学生对于本节课的内容由于事先做好了导学案,所以有充分的思考和训练时间,通过合作学习,进一步应用定义解决问题,学生积极主动参与复习的全过程,特别是让学生参与归纳、整理的过程,为学生提供了充分的锻炼机会。

  3.系统有效的完成教学任务

  系统规划复习和训练的内容,帮助学生将所学的分散知识系统化。注意从学生的认识出发,通过学生解题的体验,挖掘提升数学方法和知识;注意细节和纠错,及时反馈作业中的问题。学生错误得到点评纠正,学生的思维和创造性得到提高。

  等差数列教学反思6

  一、教材分析及能力要求:

  数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。

  二、教学中的重点、难点教学

  数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。

  三、教学过程反思

  在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。因此,对等差数列的前n公式的推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。

【等差数列教学反思范文(精选6篇)】相关文章:

1.等差数列教学反思

2.等差数列的教学反思

3.等差数列教学反思范文

4.等差数列教学反思周记

5.《等差数列性质》的教学反思

6.等差数列教学反思(通用6篇)

7.《等差数列前n项和》教学反思范文

8.等差数列教学设计