【篇一:《小数乘法》教学反思】
小数乘法这个单元的知识是在三、四年级整数乘法和小数的基本认识的基础上的一个延伸。我在教学中本以为学生会轻而易举的掌握知识,可是教学下来学生做题的情况却令我出乎意料。总结起来学生出现问题的情况大致有两种:
1、方法上的错误:不会对位;计算过程出错。小数乘法的对位与小数加减法的对位相混淆;而不是末位对齐。学生在计算过程中花样百出的现象较多,如在竖式计算过程中小数部分的零也去乘一遍;每次乘得的积还得去点上小数点,两次积相加又要去对齐小数点等。
2、计算上的失误:做题马虎、不仔细。看成整数乘法算好后,忘加小数点;或小数点打错位置;或直接写出得数(如2.15×2.1的竖式下直接写出4.515,无计算的过程),做完竖式,不写横式的得数等。
面对这种严峻的情况,使我不得不静下心来重新审视自己的课堂教学,并对此深刻的进行了反思:
一、教师主导性太强在学生做题中出现错误时,我总是急于给同学分析做错的情况,而没有让同学自己找找原因,如果让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。或者还可以把学生所有的错题的形式集合在一起,让学生自己“会诊”,找出错因。
二、新授前相关复习不够到位对于学生的学习起点没有一个正确的认识,在学生的基础掌握不好的情况下,就应该先为学生作好铺垫,提前让学生作好整数乘法和小数初步认识的复习,而不应该急于按教学计划开课。如果在开始教学新知识时就把好计算关,给学生夯实基础的话,就不致于出现正确率较低的现象。
三、要注重培养学生的口算能力《新课程标准》指出:口算既是笔算、估算和简算的基础,也是计算能力的重要组成部分。在平时的教学中,就要多加强口算题的训练,以提高计算正确率。
四、忽视小数乘法和小数加减法计算的根本区别。小数加减法和小数的乘法最根本的区别就是小数点的位置情况,在开课之前我没能作出预料,可是在学生的做题中,我却发现了好多同学在学完小数乘法的末位对齐后,加减法就忘记了小数点对齐。
我想如果我能在课前作好充分的预设,在课上作好强调,学生的出错率也会降低。经过此教学,我找到了自己在教学中存在的问题,也为我在下一部分的教学提了一个醒,使我越来越认识到:没有精心的备课,就没有高效的课堂。没有了反思,就没有自己的教育信念,永远成不了具有自己鲜明个性的教师。
【篇二:《小数乘法复习课》教学反思】
小数乘小数的计算方法,教材这样归纳:先按照整数乘法计算,看因数中一共有几位小数,再从积的右边起数出几位,点上小数点。在实际教学中,还有学生根据前面小数乘整数的计算方法迁移归纳成:看因数中一共有几位小数,积就是几位小数。这两种说法实际上是一致的,都可由积的变化规律得出。因此,小数乘小数是第一单元的一个复习重点。说算理对于学生计算方法的掌握,逻辑思维能力的培养具有积极的作用。然而搞形式化说理,忽视学生对算理的感悟,则有害而无益,形式化说理,表面上看似乎有理有据,推理严密,但它不是建立在学生对计算过程和方法感悟的基础上,因而难以使学生对算理真正内化,难以使学生理解实现对所学知识的“意义建构”。因此复习中要准确的把握学生的学习状况,真正做到查漏补缺。在讲算理的同时,重视计算技能的培养,细化类型,使各个层次的学生都能正确的理解和掌握计算的方法,这样才能切实提高课堂复习效率。
在学生做题中出现错误时,我总是急于给学生分析做错的情况,而没有让学生自己找找原因,如果我让他们先想想小数乘法的法则,然后再跟错题比较一下,这时候有的同学可能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。要注重培养学生的口算能力。口算既是笔算、估算和简算的基础,也是计算能力的重要组成部分。由此可见,在我班计算能力差的最根本原因就是口算能力差,所以我应该首先从口算能力着手,每天坚持进行口算练习。
从今天的失败中,我找到了自己在教学中存在的问题,为我在下一部分的教学提了一个醒,也使我越来越认识到:没有精心的备课,就没有高效的课堂。
【篇三:小数乘法教学反思】
通过小数乘法的教学,学生明白了根据积的变化规律,即:先按整数乘法的计算方法得出积,再看两个因数共有几位小数,就从积的右边起数出几位,点上小数点。积的位数不够,要在积前用0补足后再点小数点。
这时有一道判断题引起了不小的争议。这道题是判断“三位小数乘一位小数,积一定是四位小数”。对于这道题,大家众说纷纭,结果理由各不相同。
有的同学认为是对的,意见归纳如下:
书中关于小数乘法计算法则说:“计算小数乘法,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点”。两个因数一共有4位小数,那么积肯定是四位小数。
有的同学认为是错的,意见归纳如下:
三位小数乘一位小数,如果积的末尾有0,那积就不是四位小数,如0.125×0.8的积本来是0.1000,但因小数末尾的零可以省去,便得到积为0.1,于是就出现了三位小数乘一位小数,积不一定是四位小数的情况!
针对学生出现的不同意见,我先让学生充分发表自己的意见。最后我提醒同学们,数学讲究严密性,处理后的'积不能与原来的原始积混为一谈。做1.25×0.08时,我们先用125×8=1000,然后看因数当中一共有4位小数,于是就从积的右面起数出4位点上小数点!而不是先去零后,再数位数!要注意的是我们在点上积的小数点时就已经确定了一点:积是四位数!虽然为了书写简便,在不影响积的大小的情况下,我们根据小数的性质将小数部分末尾的0省略掉。但省略不等于没有。我们在判断小数乘法的积是几位小数时,要根据小数乘法的计算法则,对原始的积进行判断,所以三位小数乘一位小数,积一定是四位小数。
【篇四:小数乘法教学反思】
今天是学生学习小数乘法的第一课时,虽然进入课堂之前我已经思考了很久,并且为此进行了精心的教学设计,但总朦朦胧胧地觉得我的目标定位有问题。就在铃响的一刹那间,一个念头一闪而过,我禁不住问了自己一个问题:今天这堂课我到底要学生学什么?是教会学生做小数乘法吗?还是通过小数乘法来提升学生的数学素养?显然,后者比前者更能体现学科的数学价值。抱定这样的目标之后,我那“精心”的教学设计也受到了彻底的颠覆。
在课的开始,提供了一组题:
(1)125×3=375
(2)12.5×3=37.5
(3)1.25×3=3.75
(4)0.125×3=0.375
请学生比较第(2)(3)(4)题与第(1)题之间有什么联系?旨在渗透积的变化规律,并试图沟通小数乘法时与整数乘法之间的联系。然后在谈话中创设了一个生活情境:一本数学本的价格是0.52元,每位同学开学的时候都发到了4本数学本,请你算算每个人一共要多少钱?提出要求:怎样列式?为什么可以这样列?(0.52+0.52+0.52+0.520.52×4或4×0.52)这样做的目的是让学生明确:小数乘以整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。
而后,我提出挑战:你能算出0.52×4或4×0.52结果是多少吗?请你来动笔算一算。学生开始尝试计算,先做好的上来板演,下面的同学如果有与黑板上的不一致,也可以上来把你的过程展示出来。一个接着一个上来,看来情况真的很复杂,列举一下:略
在我巡视的过程中,发现主要就是这三种做法。接下来就让学生陈述理由。
生1:我们刚刚学过的小数加减法就是相同数位对齐,我就把4和0对齐,然后按照整数乘法的法则计算。
师:那积里面怎么会有一个小数点呢?
生1:我把0.52看成了52,扩大了100倍,所以积要缩小100倍,这样才能保证积的大小不变。
生2:我把0.52元扩大100倍后成了52分,52分×4=208分,再改写成用元作单位,就要缩小100倍,得到2.08元。
话音刚落。一生马上补充:她的单位名称错了,前两道的单位名称应该是分,不是元。其他同学根据学生的补充也发现了问题,对于她的发言,同学们露出了信任的神情。
生3:(大概是听了前面的同学说得振振有辞,显得很紧张,发言时含糊不清,极不肯定。)
我想描述一下自己当时的心理状态:生1的口才很好,平时对数学总有自己的见解,想要驳倒他还真不容易;生2的问题好解决;生3的想法最符合意思,可偏偏又讲不清楚,真是不凑巧啊!我开始着急了,觉得要收不回来了,怎么办?我积极地寻找对策,先点评了生2的做法,肯定其想法,然后我就指着生1和生3的做法说,他们现在两个人的做法都不一样,你准备支持哪一方的做法呢?请说出你的理由来。学生思考了片刻,陆陆续续开始举手发表自己的见解。在经过一系列的辩论之后,学生开始明确,其实大家的想法都是一致的,都是把小数乘法转化成了整数乘法,既然按照整数乘法计算,就要遵守整数乘法的法则,4自然要和2对齐。课堂上生1带着他的部队开始主动向生3部队靠拢,我也长长地舒了一口气。
第三层次,我延续情境:刚才我们已经算出每个人需要2.08元钱,那你能算一算我们班50个人一共需要多少钱吗?其实今天的败笔也在此,这一层次的练习应该将班级人数拟定为51人,这样的话更有利于今天的小数乘法学习,50最终还是归纳为一位数,不能很好地暴露问题,因此在今后的练习设计中要注意问题的全面性与合理性。
今天的课堂也给了我很多的思考:根据“新基础教育”的思想,当课堂上我们把问题“放”下去之后,面对“收”时真有点不知所措,这里有很多的因素困扰着我们:该怎么“收”?收到什么样的度?资源怎样有效地为课堂教学所用?思来想去,还是自己的专业素养不够,今后需要不断提高。
【小数乘法教学反思4篇】相关文章: