本课是以天平为形象支撑,结合了具体的问题情境,用式子表示天平两边物体的质量关系,让学生通过观察、分析、写出式子,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。
由于认识水平的局限性,小学生往往把运算中的等号看作是做什么的标志。如在算式3 + 2的后面写上等号,往往被理解是执行加法运算的标志。他们通常把等号解释为答案是。而实际上,应把等号看作是相等和平衡的符号,这个符号表示一种关系,即等号两边的数量是相等的,也就是在3 + 2与5之间建立了相等的关系。本课设计,首先着力帮助学生构建对相等关系和等式的理解,而不是蜻蜓点水般一带而过,从而为后续认识方程,体会列方程是表示现实情境中的等量关系,方程是刻画现实世界的模型,建立良好的基础。
方程,对小学生来说,不仅是形式上的认识,也是感受在解决实际问题过程中建立模型的过程。全课教学过程,教师在出示图的基础上,都是引导学生先用语言描述,即把日常语言抽象成数学语言,进而转换成符号语言。如试一试第二幅图,学生很容易列出形如20 - 12 = x的式子,这样的式子反映的是学生仍然停留于算术思路。让学生先用语言描述图意,从直观的图中抽象出文字语言表述的数量间的相等关系,然后让学生进一步用数学式子表示。在多次经历这样的活动过程中,学生感受到方程与实际问题的联系,领会数学建模的思想和基本过程,顺利实现从算术思维向代数思维的过渡。