高考抛物线知识点总结

时间:2021-08-31

  抛物线是高考数学的一个重要考点。抛物线是指平面内到一个定点F和一条定直线l距离相等的点的轨迹。下面小编为大家带来了高考抛物线知识点总结,仅供参考,希望能够帮到大家。

  1. 抛物线定义:

  平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0

  2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。

  3. 对于抛物线上的点的'坐标可设为,以简化运算。

  4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有解。

  说明:

  1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。

  2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。

  3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。

  抛物线的焦点弦的性质:

  关于抛物线的几个重要结论:

  (1)弦长公式同椭圆.

  (2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部

  (3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p>,高二;0)的斜率为k的切线方程是y=kx+

  (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是

  (5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则

  (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F.

  利用抛物线的几何性质解题的方法:

  根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明.

  抛物线中定点问题的解决方法:

  在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值等方法。

  利用焦点弦求值:

  利用抛物线及焦半径的定义,结合焦点弦的表示,进行有关的计算或求值。

  抛物线中的几何证明方法:

  利用抛物线的定义及几何性质、焦点弦等进行有关的几何证明是抛物线中的一种常见题型,证明时注意利用好图形,并做好转化代换。

【高考抛物线知识点总结】相关文章:

1.关于抛物线知识点总结

2.高中抛物线知识点总结

3.高考小说知识点总结

4.高考圆知识点总结

5.高考数列知识点总结

6.高考音乐知识点总结

7.高考语法知识点总结

8.青春抛物线作文