导语:对大学数学知识点进行总结,有利于各位更好学习。以下是小编整理的大学数学知识点总结,供大家阅读。
(极限)
1.极限的定义
2.极限存在与不存在如何去判断
3.怎样去求一个函数的极限?有哪几种方法?对应不同的类型的函数极限应该用选用哪种方法?
4.函数在一点上的极限与函数在这个点上的连续性有什么关系?
5.五大基本初等函数及其衍生出的函数,在连续性上有什么特点?
6.函数在一点上不连续,有几种情况?
7.洛必达法则(L’Hopital’s rule)是什么?什么情况下可以使用洛必达法则求极限?
(导数)
1导数的定义 以及导数在函数某一点上的意义
2.瞬时变化率(instantaneous rate of change)和平均变化率(average rate of change)分别怎么表达,代表什么含义
3.怎样求一个函数的导数?各大基本函数的求导公式是什么?导数的基本运算 (product rule,quotient rule)分别怎么运用
4.什么是复合函数(composite function)?如何利用链式法则(chain rule)求符合函数的导数?
5.什么是隐函数(implicit function)?如何求隐函数的导数?
6.怎样求参数方程的导数?(BC)
7.怎样求极坐标函数的切线的斜率?(BC)
8.函数在什么情况下不可导?
9.一个函数的二阶导数(second order derivative)和函数的图像有什么关系?
10.Concave up? Concave down? Inflection point怎么求 如何判断以及分别在函数图像上是怎么样表示的?
11. 如何用位置函数(position function)及其导数、二阶导数描述一个质点在直线上的运动?位置函数的一阶导数和二阶导数的实际意义是什么?什么情况下,质点会加速运动?什么情况下,质点会减速运动?距离(distance)的概念是什么?如何求距离?位移(displacement)的概念又是什么?如何求位移?speed 和 velocity有什么区别?
12.如果质点在一个平面上运动,我们怎样用函数来描述它的运动?什么是 vector function?(BC)
13.什么是函数图像在一点上的切线(tangent)?如何求切线的斜率?如何求切线的方程?以及线性近似怎么来表达?
14.什么是相对最大值或相对最小值local/relative maximum/minimum?什么是绝对最大值或绝对最小值absolute/global maximum/minimum?求一个函数的这些最大或最小值的步骤是什么?什么是critical point?Critical point和函数出现相对最大最小值的点的关系是什么?
15.什么是相对变化率(related rates)?求相对变化率的步骤是什么?、
16.什么是微分中值定理(mean value theorem)?微分中值定理成立的条件是什么?微分中值定理有什么数学意义?微分中值定理的几何意义是什么?
17.什么是微分(differential)?微分和导数有什么区别?
线性代数作为构成考研数学的三大科目之一,重要性不言而喻。本文为大家总结了线性代数科目的知识点框架,希望可以帮助到大家。考线性代数的学习切入点是线性方程组。
换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
线性方程组
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
关于线性方程组的解,有三个问题值得讨论:
1、方程组是否有解,即解的存在性问题;
2、方程组如何求解,有多少个;
3、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
高斯消元法
这最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
1、把某个方程的k倍加到另外一个方程上去;
2、交换某两个方程的位置;
3、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为阶梯形方程组。
由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
对方程组的解起决定性作用的是未知数的'系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。
可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
系数矩阵和增广矩阵
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现d=0这一项,则方程组无解,若未出现d=0一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解;若r<n,则方程组有无穷多解。
在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。
齐次方程组
常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。
齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。
利用高斯消元法和解的判别定理,以及能够回答前述的基本问题:解的存在性问题和如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。
对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。
通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。
用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。
总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。
【 大学数学知识点总结】相关文章: