等比数列定义教学反思
背景分析:在学过了等差数列后,怎样引入等比数列的定义?经过教学实践,认为采用创设如下的类比性问题情境,引导学生再发现等比数列定义,效果较好。
教学反思:
在课堂中,把等比数列定义及通项公式的探索、发现、创新等思维过程的暴露,知识形成过程的揭示,作为教学重点。同时采用启发式、谈话式的教学方法,引导学生进行类比推理,促使学生不知不觉地参与教学的.全过程,为学生自己探索发现等比数列的有关知识营造了良好的氛围,体现了数学发现的本质,培养了学生合情推理能力、逻辑推理能力、科学的思维方式及勇于探索的创新意识等个性品质。
需要注意的是:教师如果忽视学生内在的知识结构和新旧知识之间的潜在联系,简单地从外部给学生“灌入”新知识,仅仅以课本为本,以教学大纲为纲进行备课和上课,教学效果定会不尽人意。只有充分考察了学生的知识结构,才能通过引导学生进行知识的迁移、类比,引导他们发现知识之间的联系,从而使新知识有效地纳入学生的认知结构中,并逐步培养了学生的创新能力。
华罗庚先生说:“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”所以说,定理、法则、公式的归纳、猜想、发现的过程比证明过程更重要。归纳是人类探索真理和发现真理的主要工具之一,归纳法在发现新的数学问题,在探索和发现解题途径的过程中起着重要作用。在研究数学问题时,常常将一些一般问题通过特殊化来考察,从中发现一般问题的结论或解题途径,这种由特殊到一般的思考,能否有所发现,关键在于恰当地运用归纳法。
【等比数列定义教学反思】相关文章: