数学简史的读后感

时间:2021-08-31

关于数学简史的读后感

  篇一:《数学简史》的读书感受

  我阅读《数学简史》,完全在一种休闲的、轻松的,也是舒坦的、愉快的状况之中。碰到繁复的数学公式、定理及其证明等,我一目十行、囫囵吞枣,一如我读大部头的小说,往往常规地跳过向来不太在意的大段心理描写一样。读《数学简史》,我却十分留意它行云流水的叙述、缜密思维的演绎、多姿多彩的话语、宏大紧密的结构。有时,我按图索骥,对着目录,找准其中的某一篇章,仔细揣摩;有时,我随意打开其中的某页,顺势而读,总能做到乐在其中。我不求透彻的理解、不求系统的把握,数学简史》让我与牛顿、高斯这些巨人亲密接触,也让我循着代数、几何、算术、三角学发展的脉络,靠近(还不能说走进)数学。在我来说,只是追求阅读视野的扩大、知识背景的重构。

  数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。

  它的内容涉及到从上古时代到19世纪初的这段时期。为了跟踪过去20XX年当中主要数学概念的发展,作者非常重视第一手资料的搜集与运用。在介绍重要数学家的工作时,大量从他们的原著中引用材料。在不列颠博物馆、英国皇家学会和剑桥三一学院的帮助下,引用了比较多的史料,使人们对原始的情况获得了深刻的印象。同时,作者还注意到数学知识的继承性和积累性,并不把重大的发现和发明完全归功于某一个人。例如对欧几里得和牛顿这样一些主要的流派,作者到说明他们的成就的渊源,从而勾画出数学科学本身发展的规律。斯科特博士依靠他对数学史的驾驭自如的能力写出了这本富有激励性的好书。

  数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

  数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

  篇二:数学简史读后感

  《中学数学简史》内容概要:所选内容贴近高中生数学水平,针对中学实际,以史为据,精选史料,用通俗、生动的语言介绍数学产生、发展规律,数学思想方法等。适于高中学生、中学教师和具有中等以上文化程度的其他读者阅读……

  《中学数学简史》读后感,来自卓越亚马逊网友:比想象的要好很多,MorrisKline的名著《古今数学思想》完全忽视了中国的曾经灿烂的数学历史。看了这本书,你会为中华民族曾经领先世界几千年的杰出数学文化而自豪,可惜在元代以后没落了,书中的大量数学家轶事也很生动有趣!很值得一读……

  中学数学简史的读后感,来自京东网的网友:我不得不说,这是我看过最生动有趣的数学史书籍,而且看过后对于各数学分支的`来龙去脉即可得到很清晰的形象,我觉得本书对于中学数学的学习不但不是额外的负担,对于想在数学领域扎根的人们,掌握数学史,绝对是不可绕过的必要之路!而本书恰恰是非常适合中学生,甚至对于离开校园20多年的我仍然给于我极大的阅读乐趣!(最近3个月为了工作需要我重拾中学数学内容,买了超过50本相关数学参考书,所以对此书绝无过誉)我在此,极力向你推荐本书,因为它不但能保证让你“学到你以前所不知道的数学史实”同时还让你“惊叹于著者活泼、生动、有趣且深入浅出的笔法”,所以看这本书绝对是一种享受……

  数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

  数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。

  篇三:读《数学简史》有感

  一气呵成,读完《数学简史》,心底不由得涌上一股冲动,那是一种什么感觉呢?对了,是感动,是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。

  我不知道人们为什么长久以来称数学为“科学的女皇”,也许是女皇有着一种让人无法亲近的神秘感,但是她的面容又是如此的让人们向往和陶醉。女皇陛下,揭开你神秘的面纱,让我目睹你绝世的风姿,体会你无尽的风韵,感动你带给我所有的感动吧!

  仰望者,唯巨星也!数学的漫漫长河中,涌出过无数的璀璨巨星,从毕达哥拉斯、欧几里德得、祖冲之到牛顿、欧拉、高斯、庞加莱、希尔伯特……当他们一个个从我的心底流过时,有一种兴奋,更有一种感动,他们才是时代真正的弄潮儿。

  欧几里得的《几何原本》开创了数学最早的典范,是漫漫长河中的第一座丰碑,公理化的思想由此而生;

  祖冲之关于圆周率的密率(355/113)给了国人足够骄傲的资本,也把“割圆术”发挥到了极致;

  牛顿和莱布尼兹联手创造了微积分(尽管他们之间有这样那样的矛盾),开创了数学的分析时代,微积分也被誉为“人类精神的最高胜利”(恩格斯语);历史就是这样被书写,历史就是这样被引领,历史就是这样被创造。

  一个多世纪前的1900年,德国数学家希尔伯特正在做一个题为《数学问题》的演讲,提出了23个需要被重视和解决的数学问题。正是这23个数学问题,引领了整个二十世纪数学发展的主流。

  1994年,当二十世纪即将落幕的时候,年轻的英国数学家维尔斯创造了一个新的历史——费马大定理获证,从而结束了这场长达300年之久的竞逐,给二十世纪的数学演奏了一首美妙的终曲。

  就这样一次次的被感动,不仅为成功者喜悦感动,也为不被承认的成功者默默感动。

  天才往往是孤独的,先知者注定得不到世人的理解。

  许多天才的数学家,英年早逝,终生难以得志。

  椭圆函数论的创始人阿贝尔一生贫病交加,大学毕业长期找不到工作,在他仅仅27年的短暂生命中,却留下许多创造性的贡献。但当人们认识到他的才华,柏林大学终身教授的聘书下达时,他已经离开人世两年了。

  同维尔斯一样,伽罗瓦同样攻克了历经三百年的难题——方程根式解的存在问题;但不同的是,维尔斯成为数学的终身成就奖——沃尔夫奖最年轻的得主,那年他44岁,而伽罗瓦死时不到21岁,他的研究只能藏身于废纸篓中。

  集合论和无限概念的创始人康托尔,由于他的理论不被世人理解而广受排挤,最后郁郁而终。

  ……

  天才的思想往往是超前的,在我们这些凡夫俗子眼中,的确很难理解他们。但就是在这样的环境下,他们依然默默的坚守着自己的信念,执著着自己的理想。除了感动,我还能有什么呢?

  在那漫漫长河中,璀璨巨星令我欣然神往,惊涛骇浪更令我心潮澎湃。三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势,海洋般伟岸的身姿。

  每一次危机巨浪之后,纳百川,聚众流,数学以更加广阔的胸怀滚滚向前,尽管这其中有很多悲壮的成分。

  第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。

  第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。

  第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。

  滚滚巨流,势无可挡,数学的长河竟拥有如此的悲壮和激情,那种“山穷水尽疑无路,柳暗花明又一村”的成长能不被感动吗?

【关于数学简史的读后感】相关文章:

1.生命简史的读后感作文

2.时间简史的读后感作文

3.有关《时间简史》的读后感

4.数学简史的读后感

5.《时间简史》的读后感

6.时光简史组诗

7.《时间简史》的读后感650字

8.万物简史的读后感300字

9.关于科技书《时间简史》的读后感3000字