最新环保论文
一、引言
近年来,随着半导体工业的发展以及高速光电信息时代的来临,LPE、VPE等技术在半导体业生产中的作用越来越小;MBE与MOCVD技术相比,由于其设备复杂、价格更昂贵,生长速度慢,且不适pC-长含有高蒸汽压元素(如P)的化合物单晶,不宜于工业生产。而金属有机物化学气相淀积(MOCVD),1968年由美国洛克威公司的Manasevit等人提出制备化台物单晶薄膜的一项新技术;到80年代初得以实用化。经过近20年的飞速发展,成为目前半导体化台物材料制备的关键技术之一。广泛应用于包括半导体器件、光学器件、气敏元件、超导薄膜材料、铁电/铁磁薄膜、高介电材料等多种薄膜材料的制备。
二、MOCVD的主要技术特点 国内外所制造的MOCVD设备,大多采用气态源的输送方式,进行薄膜的制备。气态源MOCVD设备,将MO源以气态的方式输送到反应室,输送管道里输送的是气体,对送入反应室的MO源流量也以控制气体流量来进行控制。因此,它对MO源先体提出应具备蒸气压高、热稳定性佳的要求。用气态源MOCVD法沉积一些功能金属氧化物薄膜,要求所选用的金属有机物应在高的.蒸气压下具有高的分子稳定性,以避免输送过程中的分解。然而,由于一些功能金属氧化物的组分复杂,元素难以合成出气态MO源和有较高蒸气压的液态MO源物质,而蒸气压低、热稳定性差的MO源先体,不可能通过鼓泡器(bubbler)由载气气体输运到反应室。 然而采用液态源输送的方法,是目前国内外研究的重要方向。采用将液态源送入汽化室得到气态源物质,再经过流量控制送入反应室,或者直接向反应室注入液态先体,在反应室内汽化、沉积。这种方式的优点是简化了源输送方式,对源材料的要求降低,便于实现多种薄膜的交替沉积以获得超品格结构等。
三、MOCVD技术的优缺点 MOCVD技术在薄膜晶体生长中具有独特优势:
1、能在较低的温度下制备高纯度的薄膜材料,减少了材料的热缺陷和本征杂质含量;
2、能达到原子级精度控制薄膜的厚度;
3、采用质量流量计易于控制化合物的组分和掺杂量;
4、通过气源的快速无死区切换,可灵活改变反应物的种类或比例,达到薄膜生长界面成份突变。实现界面陡峭;
5、能大面积、均匀、高重复性地完成薄膜生长。适用于工业化生产;正是MOCVD这些优势(与MBE技术一起)。使化合物单晶薄膜的生长向结构区域选择的微细化,组分多元化和膜厚的超薄化方向发展,推进着各种异质结材料应运而生,实现了生长出的半导体化合物材料表面平滑、掺杂均匀、界面陡峭、晶格完整、尺寸精确,满足了新型微波、毫米波半导体器和先进的光电子器的要求,使微波、毫米波器件和先进的光电子器件的设计和制造由传统的“掺杂工程”进人到“能带工程”和“电子特性与光学特性裁剪”的新时代。人们已经能够在原子尺度上设计材料的结构参数,从而人为确定材料的能带结构和波涵数,制备出量子微结构材料。 但MOCVD设备也有自身的缺点,它与MBE设备一样价格不菲,而且由于采用了有机金属做为源,使得在使用MOCVD设备时不可避免地对人体及环境产生一定的危害。这些都无形中增加了制备成本。对于低压生氏,系统只需要配置机械泵和压力控制器就可控制生长压力;但是所配置的泵要有较大的气体流量承载量。MOCVD生长中,我们所用的许多反应源(例如PH3、AsH3、H2S以及一些MO源)都是有毒的物品,进行合理的尾气循环处理是非常必要的。因此,在设计和使用时要考虑到这些因素,做好安全防护措。对于一些功能金属氧化物薄膜而言,寻找高蒸气压、
【最新环保论文】相关文章:
1.最新的环保论文
4.环保论文推荐
5.环保论文LED
6.环保论文精选
7.环保小论文
8.环保低碳论文