勾股定理的研究性论文

时间:2021-08-31

关于勾股定理的研究性论文

  第一篇勾股定理论文:

  勾股定理的内容是aZ+bZ=eZ(a、b、e是直角三角形的三条边)。我们以三角形的三条边组成三个正方形,通过割补移位,使两个正方形面积之和等于第三个正方形面积的形式,制作一幅投影片,用来配合勾股定理的推导,对教学十分有益。

  一、片型

  抽拉旋转片

  二、制作方法

  1、底片。画一个直角三角形,标出三条边a、b、“。以“、b、“为稗长画三个正方形,其中“边组成的正方形用实线画出,均匀地涂上蓝色。其他两个正方形用虚线画出,不涂色彩。见图1。

  图1

  2、抽片(一)。取一条长胶片,长约等于底片长的一倍半,宽等于底片宽的一半。以b为边长,用实线画一个正方形,均匀涂上红色,见图2。

  图2

  3、抽片(二)。取一条长胶片,长等于底片长的2倍,宽等于底片的宽。以c为边长,用实线画一个正方形,在正方形内留出两个直角三角形的空白,三角形的大小与图l中的直角三角形相同,其余部分均匀涂上黄色,见图3。

  图3

  4、转片(一)。用胶片剪一个直角三角形,大小与图1中的直角三角形相同,涂上黄色,以斜边和长直角边的交点为轴心打孔,准备装旋转铆钉,见图4。

  图4

  5、转片(二)。同4所述,剪一个直角三角形,涂上黄色,以斜边和短直角边的交点为轴心打孔,准备装铆钉,见图5。

  图5

  6、将图4、图5所示的两个三角形,放在图3所示的正方形内,用铆钉分别将两个三角形固定在正方形的两个顶角上,使之能转动。注意两个三角形的黄色与正方形内黄色一致,看上去是一个完整的正方形,见图6。

  图6

  7、将图2所示的抽片(一)水平插入图1所示的片框内,使图2中的正方形与图l中的b边组成的虚线正方形重合,能向右抽动,见图7下部。

  图7

  将图6所示的抽片(二)按与底片直角三角形的斜边c垂直的方向,插人图1所示的片框内,使图6中的正方形与底片。边组成的正方形重合,并能向右下方抽动,见图7。

  三、使用方法

  1.如图7所示,讲直龙三角形的三条边分别是a、b、“,以氛b、c、为边一长的蓝色、红色、黄色三个正方形分别代表aZ、bZ、eZ。

  2.向右拉动红色的正方形,向右下方拉动黄色的正方形,至图8所示的位置。说明红、黄两个正方形的位置变了,但面积大小没有变。指出黄色正方形与蓝色正方形及红色正方形有一部分已经重合,如果其他部分也完全重合,就证明面积相等了。

  图8

  3.将图4所示的三角形逆时针旋转9。。,将图5所示的三角形顺时视旋转90。,如图9所示,会出现以。

  边组成的黄色正方形,通过移位、分解、旋转后,与a边组成蓝色正方形,和与b边组成的红色正方形完全重合,从而直观的表示:a+b=c。

  图9

  第二篇勾股定理论文:《浅谈勾股定理因材施教》

  摘 要:勾股定理又名商高定理,也名毕达哥拉斯定理。从两千多年前至今都有人在研究,其证明方法多达500种,并且在实际生活中有广泛应用。在中学阶段,勾股定理是几何部分最重要的定理之一,不仅是教学的重点、难点、考点,而且也是几何学习的基础,除此之外,还可以激发学生学习兴趣,开拓学生知识面,提升学生思维水平。

  关键词:勾股定理 中学生 心理特征 证明方法 解题思路。

  一、勾股定理介绍

  在古代中国,数学着作《周髀算经》开头,记载着一段周公向商高请教数学知识的对话:昔者周公问于商高曰:“窃闻乎大夫善数也,请问昔者包牺立周天历度——夫天可不阶而升,地不可得尺寸而度,请问数安从出?”商高答曰:“若求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日”这是中国古代对勾股定理的最早记录。在《九章算术》中,“勾股术曰:勾股各自乘,并而开方除之,即弦.又股自乘,以减弦自乘,其余开方除之,即勾.又勾自乘,以减弦自乘,其余开方除之,即股”。毕达哥拉斯参加一次餐会,餐厅铺着正方形大理石地砖,他凝视这些排列规则、美丽的方形磁砖,但毕达哥拉斯不只是欣赏磁砖的美丽,而是想到它们和"数"之间的关系,于是拿了画笔并且蹲在地板上,选了一块磁砖以它的对角线 为边画一个正方形,他发现这个正方形面积恰好等于两块磁砖的面积和。这是西方对毕达哥拉斯定理最早的描述。

  二、中学生心理特征

  中学阶段的学生正处于发育的第二高峰期,在生理和心理上都有很大的变化,在心理上的普遍特征:1.有意注意发展显着,注意的范围扩大,稳定性和集中性增强;2.记忆力随着年龄的增长而增加,对图片、音频等感性的记忆较好,对公式、定理等纯理论的记忆较差,尤其是数学学科,基础的理论公式很多,学生很容易记混淆;3.抽象思维的能力有提升,处于形式运算阶段,但对事物的思考基本还停留在事物表面,没有完全形成自主有意识的抽象思维倾向;4.自制力有所提升,他们开始喜欢崇拜有意志力、自控力的人,但是自身的自制力比较薄弱。虽然我并不赞成把学生分为优等生、中等生和差等生,但是在实际的教育中,是存在这样的分化,并且学生都存在上述的四个普遍特征,也存在一些差异:学习能力、思维方式、自制力等不同。优等生在各个方面普遍比中等生好,而中等生又普遍比差等生好,我们应该从这些差异点着手,因材施教,激发学习兴趣,提升学习能力,引导自主学习,减少学生之间的差异,使学生健康成长,实现自我价值。

  三、勾股定理的典型证明方法

  勾股定理是全人类文明的一个象征,也是平面几何学的一颗明珠,在实际生活中也有广泛应用。两千年以来,人们从来没有停止对勾股定理的研究。据不完全统计,勾股定理的证明方法多达500种,每一种方法都有优点,每一种方法都包含全人类的智慧。但在中学教学中,我们不可能做到面面俱到,只能教给学生一些典型、基础的证明方法,通过教学引导学生自主学习,自主探索。

  说明:第一种证明方法有两个要点:1.几何图形的变化;2.确定等量关系。初中生可以理解这两个要点,因此,我们可以以探究的形式让学生自己做,一来可以提高学生自主学习的兴趣,二来也符合当下的教育理念——探究学习。对于基础较薄弱的学生而言,在掌握基本知识点的同时,可以增加他们学习数学的兴趣,减少对数学的.畏惧情绪,对于基础较好的学生而言,他们可以通过这种证明方法,自学勾股定理的基本知识。第二、三种方法分别结合了相似三角形和圆的基础知识点,在教授相似三角形和圆的相关定理时,提出他们在勾股定理证明中的运用。把前后知识点串联起来,差等生可以回顾勾股定理,加深理解,激发他们学习的兴趣,中等生和优等生可以构建不同知识点之间的联系,形成知识体系,提升他们的抽象思维能力,对后继学习有很大帮助。

  四、勾股定理的典型解题思路

  本题先通过不变量寻找等量关系,再利用勾股定理求解问题。引导基础较差的学生通过折叠寻找图形中的不变量,建立等量关系,提升其处理数学问题的信心,学会一些数学的基本方法和思维方式;引导基础较好的学生复习对称图形的性质,适当提炼解题思路,构建知识体系。

  说明:题目本身很简单,由题目容易想到勾股数3、4、5,而忽略分类讨论。我们应引导学生突破惯性思维,不能过于片面、主观,应认真仔细省题。初中生对问题有思考,但思考的深度不够。通过这道题可以告诉学生:突破惯性思维,全面思考问题,不惧怕数学题,使他们愿意主动思考数学题。本题运用到分类讨论思想,这个思想在数学上的运用十分广泛。

  五、结语

  勾股定理是中学阶段最重要的定理之一,本文从中学生的心理特征,以及不同层次的学生的不同学习特点、心理特点出发,立足缩小学生间的层次差异、实现学生自我价值的观点,讨论勾股定理在实际教学中的不同证明方法的教法,和一些典型题型的解题思路,以及如何在教课过程中引导不同层次的学生学习,产生数学学习兴趣,构建数学知识体系。

  参考文献:

  [1]《周髀算经》[M].文物出版社1980年3月.据宋代嘉靖六年本影印.

  [2]《九章算术》[M].重庆大学出版社.2006年10月.

【关于勾股定理的研究性论文】相关文章:

1.勾股定理小论文

2.勾股定理的小论文

3.论文《研究性教学》

4.研究性马哲小论文

5.有关勾股定理的小论文

6.勾股定理小论文范例

7.高中研究性学习的论文

8.妇产科研究性论文