1引言
QAR C Quick Access Recorder)是民航飞机上装载的快速存取记录器,记录器介质通常为可擦写光盘或PCMCIA卡,记录时间可达数百小时,记录参数涵盖绝大部分飞行品质监控数据。飞机航后维护时,机务工程师对QAR记录的原始二进制数据进行译码,转换成所需的参数工程值,工程值是对飞行品质监控数据的真实还原。工程值包含高低压转子转速、排气温度、燃油流量、滑油压力、高度及空速等100多个模拟量,以及发动机引气、发动机火警、GPWS告警、防冰活门、起落架收放等200多个开关量,这些参数反映飞机运行过程中各种变化情况和性能状态,对监控操纵细节、保障飞行安全、提高运营效率起到了科学有效的保障作用。
QAR数据是飞行技术检查、安全调查评估、飞行故障排故的重要依据。怎样利用QAR数据对飞机发动机故障进行准确有效的排故,一直是机务工程师不断摸索、总结的重要经验。本文根据在长期工作实践中总结出的经验,提出利用发动机相关QAR数据的分析,准确地进行发动机疑难故障诊断,从而有效排除发动机故障的方法。重点研究对CFM56发动机的常见故障进行排故。
2发动机转子高振动值排故方法
CFM56发动机是双转子发动机,由低压转子N1和高压转子N2组成。AVM(AirborneVibrator Monitor,机载振动监视系统)和 QAR系统均能记录低压(转子)部分和高压(转子)部分的振动数值以及相对应的转速等参数。根据MM ( Maintenance manual)手册要求,CFM56发动机通常情况下高、低压转子振动值超过3.0个单位则必须要求排故,检查确定不会导致二次损失后方能放行。若超过4.0个单位,则飞机无法放行。发动机在正常状态下高、低压转子的振动一般不会超过1.0个单位。为了保障航班正常运营,发动机的振动值达到2.5个单位以上,应采取相应的纠正措施。
2.1指示系统故障排故方法
当发动机出现振动值高的情况时,首先通过分析QAR数据判断发生高振动转子的位置、转速和飞行阶段等,确定是否为指示系统故障。因发动机工作环境相对恶劣,指示系统接头可能出现氧化、龟裂等现象,导致发动机振动指示值较高。指示系统故障,QAR数据显示为:发动机振动值高是在不同转速、不同飞行阶段随机出现,且是间歇性的。
处理这类故障的方法一般为:首先检查与振动相关的`电气接头连接紧密性,线路完好性。如果确认与电气接头无关,则有可能是AVM内部问题,相应考虑对串或者更换AVM,然后再试车检查故障是否排除。实际排故当中,采用此种方法一般可消除指示系统故障。
2.2转子自身问题排故方法
波音737-300/400和737-700/800飞机分别装配的是CFM56-3C和CFM56-7B发动机。发动机在长期使用过程中,轴承和叶片磨损会加剧,燃烧室以及高、低压涡轮会不断积累灰尘,从而导致发动机转子不平衡,振动值过大。对不同航段的QAR数据,通常高振动值是出现在某个固定的转速下,并且是在相对固定的相位角下。
若是低压转子振动较高时,则应先对发动机进行目视检查,检查风扇叶片,进口导向叶片和低压涡轮可见部分叶片有无损伤,然后检查前后收油池磁堵来判断轴承有无磨损。在以上检查结果都完好的情况下,最后进行风扇叶片配平和叶片润滑来减少振动值。可通过风扇叶片配平和叶片润滑来减小振动值,通常可降低至1.0个单位以下。
若是低压转子振动较高时,航线上没有相应的措施以降低振动值,但可对发动机高压级进行孔探或者进行磁堵检测,以确认发动机无内部损失,在确认发动机无内部损伤后,可以继续监控使用,直至发动机被安排更换。
3 EGT温度过高排故方法
3.1地面启动阶段EGT过高排故方法
CFM56发动机的EGT (exhaust gas temperature,排气温度)在启动阶段的限制值为725摄氏度。为避免飞机运行延误,确保正点率,启动阶段EGT若超过700摄氏度并持续出现时,应采取相应的维护措施。CFM56-3B发动机启动阶段EGT过高的主要原因有:VSV(Variable Stator Vane,可调静子叶片)调节出现偏差,或MEC(Main Engine Control,主发动机控制)内部磨损导致发动机富油。
若VSV出现偏差,QAR数据反映出的特征是:虽然启动阶段EGT过高,但FF(Fuel Flow,燃油流量)值不高。当发动机启动阶段EGT有超过700摄氏度的记录时,通过查看QAR数据包含的几个EGT较高航段对应的FF,FF通常不会高于1100 lbs,这种情况主要对VSV进行静态校装,调整VSV至正常位置即可排除故障。
若MEC磨损导致富油,QAR数据反映出的特征与前种情况相比,不但启动阶段EGT过高,而且FF也偏高,通常超过1 100 lbs,甚至超过1 200 lbs。出现此类故障,如启动阶段EGT和FF偏离不严重,在不影响放行时,可先进行高低慢车性能调节,使发动机在MM手册要求范围内继续安全工作,但由于MEC供油计划偏富油,只有更换MEC才能最终排除故障。
3.2爬升阶段EGT过高排故方法
导致爬升阶段EGT升高主要有三种原因: (1) EGT指示系统故障;(2)油路和气路控制系统故障;(3)发动机性能衰退,高压级工作效率低。根据QAR记录的数据分析,可以相对容易准确地判断导致爬升阶段EGT升高的原因。CFM56发动机不同型号对爬升阶段的超限值要求不同,CFM56-3C的超限值为930摄氏度,CFM56-7B的超限值为970摄氏度,当分别超过910摄氏度和920摄氏度时,应引起关注,对发动机进行密切监控和视情采取措施。
3.2.1 EGT指示系统故障
当爬升阶段EGT升高时,地面维护人员可收集最近阶段该发动机执飞时不同航段的QAR数据进行分析。如果观察到爬升阶段EGT升高,通常超过30摄氏度,而在相同N1下,FF和N2几乎没有变化,且故障之前相同N1下的EGT几乎也没有变化,则可基本判定为EGT指示系统故障。航后检查时可通过查看CDU(Control Display Unit控制显示组件)显示的故障代码,以查找相应的电气接头进行清洁或更换。
3.2.2发动机油路和气路控制系统故障
如果爬升阶段EGT升高,通过分析对比故障之前的QAR数据,发现巡航或者爬升状态下EGT,FF和N2均出现上升,在大功率状态下,EGT,FF和N2上升幅度尤为显著,此种情况表明发动机的油路或气路控制系统可能存在故障。排故时,可先排查VSV和V B V (Variable Bleed Valve,可调放气活门)等气路控制系统,在排除没有故障后,可检查MEC、燃油泵等油路控制部件故障。根据长期积累的排故经验,对于CFM56-3C发动机,多为VBV系统的问题,如VBV门卡阻,柔性驱动轴断裂造成某些VBV门密封不严,VBV马达或作动器失效导致VBV门无法动作等。
3.2.3发动机性能衰退
随着发动机服役时间的增加,发动机性能势必呈现出衰退趋势,从而导致爬升或巡航阶段EGT升高。结合QAR数据,由发动机性能衰退引起的EGT上升所表现出的数据特征为:相同N1下,EGT,FF,N2通常不会突然升高,高EGT值往往在高N1下出现,根据长期积累的排故经验,高EGT值通常在每天首次起飞或者在高原机场、高温天气下,飞机处于接近满载状态,或无减推力等情况出现时。此时应查看发动机性能报告,通过观察EGT温度来判断总体性能状况。对于波音737-300,若EGT温度已降至40摄氏度,波音737-400,若EGT温度已降至10摄氏度以下,说明发动机总体性能已下降。航线上可通过清洗发动机涵道,增加每天第一个航班的暖车时间,对飞机限飞高原机场,要求机组尽量使用减推力等,以延长发动机的在翼使用时间。
4利用QAR数据排故的注意事项
利用QAR记录的大量关于飞行品质和状态的监控数据,能够准确反映发动机参数的关联性,再现故障形式,确定故障特征,帮助机务工程师快速准确地排除故障。但也对机务工程部门和机务工程师提出了更高要求。对于机务工程部门而言,首先需要严格、高效、全程地收集、管理QAR译码数据,加强QAR系统维护,确保其能够可靠工作,并且能够承担起数据对比和分析的任务,为机务人员排故提供有力的技术支撑。同时机务工程师不仅要对飞机运行系统有深刻了解,注重排故经验的总结和交流,更需要掌握QAR提供的参数特性,分析数据背后的故障成因,培养利用QAR排故的意识和技能。
(1)必须明确采集参数的传感器位置和参数的物理意义。若无法明确参数表征的含义,会影响故障分析进程,所以应结合数据采集组件和飞机系统结构来确定参数。
(2)分析、对比QAR数据时,应注意参数的时间间隔。应选取能体现飞机前后运行状态明显的数据,过长的间隔对分析数据没有意义,过短的间隔由于相似性高而易造成干扰和误判。
(3)确定QAR数据的有效性。机务人员应结合发动机实际状态、运行环境、飞行时间等对数据进行鉴别,确保数据的有效性。
【基于QAR数据的民航发动机排故方法研究分析论文】相关文章: