高二年级下册数学试题
现在的信息化革命,没有数学,又哪里使信息可以如此快速的交换。小编准备了高二年级期中考试数学试题,希望你喜欢。
1、抛物线y=4x2的焦点坐标是________.
2.0是0的__ ____条件.(充分不必要条件、必要不充分、充要条件、既不充分也不必要条件).
3、按如图所示的流程图运算,若输入x=20,则输出的k= __.
4、某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为_ 的学生
5、口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为_ _
6.已知函数f(x)=f4cos x+sin x,则f4的值为_ ____
7 、中心在原点,焦点在x轴上的双曲线的实轴与虚轴相等,一个焦点到一条渐近线的距离为2,则双曲线方程为___ ____ ____.
8.曲线C的方程为x2m2+y2n2=1,其中m,n是将一枚骰子先后投掷两次所得点数,事件A=方程x2m2+y2n2=1表示焦点在x轴上的椭圆,那么P(A)=___ __.
9、下列四个结论正确的是_ _ ____.(填序号)
① 0是x+|x|的必要不充分条件;
② 已知a、bR,则|a+b|=|a|+|b|的充要条件是ab
③ 0,且=b2-4ac是一元二次不等式ax2+bx+c0的解集是R的充要条件;
④ 1是x2的充分不必要条件.
10.已知△ABC中,ABC=60,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为_ __.
11、已知点A(0,2),抛物线y2=2px(p0)的焦点为F,准线为l,线段FA交抛物线于点B,过B作l的垂线,垂足为M,若AMMF,则p=
12. 已知命题 : xR,ax2-ax-2 0 ,如果命题 是假命题,则实数a的取值范围是_ ____.
13. 在平面直角坐标系xOy中,椭圆x2a2+y2b2=1(a0)的左焦点为F,右顶点为A,P是椭圆上一点,l为左准线,PQl,垂足为Q.若四边形PQFA为平行四边形,则椭圆的离心率e的取值范围是____ ____.
14、若存在过点O(0,0)的直线l与曲线f(x)=x3-3x2+2x和y=x2+a都相切,则a的.值是__ __.
二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)
15.(本题满分14分)
已知双曲线过点(3,-2),且与椭圆4x2+9y2=36有相同的焦点.
(1) 求双曲线的标准方程;
(2) 求以双曲线的右准线为准线的抛物线的标准方程.
17、(本题满分15分)
已知函数f(x)=x3+(1-a)x2-a(a+2)x+b(a,bR).
(1)若函数f(x)的图象过原点,且在原点处的切线斜率为-3,求a,b的值;
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
18、(本题满分15分)
中心在原点,焦点在x轴上的一椭圆与一双曲线有共同的焦点F1,F2,且|F1F2|=213,椭圆的长半轴与双曲线半实轴之差为4,离心率之比为3∶7.
(1)求这两曲线方程;
(2)若P为这两曲线的一个交点,求cosF1PF2的值.
19、(本题满分16分)
设a{2,4},b{1,3},函数f(x)=12ax2+bx+1.
(1)求f(x)在区间(-,-1]上是减函数的概率;
(2)从f(x)中随机抽取两个,求它们在(1,f(1))处的切线互相平行的概率.
20、(本题满分16分)
如图,在平面直角坐标系xOy中,已知椭圆C:x2a2+y2b2=1(a0)的左、右顶点分别是A1,A2,上、下顶点分别为B2,B1,点P35a,m(m0)是椭圆C上一点,POA2B2,直线PO分别交A1B1,A2B2于点M,N.
(1)求椭圆的离心率;
(2)若MN=4217,求椭圆C的方程;
(3)在第(2)问条件下,求点 Q( )与椭圆C上任意一点T的距离d的最小值.
高二年级期中考试数学试题就为大家介绍到这里,希望对你有所帮助。
【高二年级下册数学试题】相关文章:
1.小升初的数学试题
4.小学数学试题