导语:函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。以下是初中函数练习题及答案的内容,仅供参考学习。
一、选一选,慧眼识金(每小题3分,共24分)
1.下列函数关系式:①,y=-2x ② y=-2/x , ③y=-2x2, ④y=2 , ⑤y=2x-1.其中是一次函数的是 ( ) (A)①⑤ (B)①④⑤
(C)②⑤ (D)②④⑤
2.一个正比例函数的图象经过点(2,-1),那么这个正比例函数的表达式为 ( )
(A)y=2x (B)y=-2x
(C)xy21 (D)xy2 1
3.函数y=-3x-6中,当自变量x增加1时,函数值y就 ( )
(A)增加3 (B)减少3
(C)增加1 (D)减少1
4.在同一直角坐标系中,对于函数:①y=-x-1 ②y=x+1 ③y=-x+1 ④y=-2(x+1)的图象,下列说法正确的是 () (A)通过点(-1,0)的是①和③ (B)交点在y轴上的是②和④
(C)互相平行的是 ①和③ (D)关于x轴平行的是②和③
5.一次函数y=-3x+6的图象不经过 ( )
(A)第一象限 (B)第二象限
(C)第三象限 (D)第四象限
6.已知一次函数y=ax+4与y=bx-2的图象在x轴上交于同一点,则a b 的值为 ( )
(A)4 (B)-2
(C)-2/1 (D)2/1
7.小明、小强两人进行百米赛跑,小明比小强跑得快, 如果两人同时跑,小明肯定赢,现在小明让小强先跑若 干米,图中的射线a、b分别表示两人跑的路程与小明 追赶时间的关系,根据图象判断:小明的速度比小强的 速度每秒快
A、1米 B、1.5米
C、2米 D、2.5米
8.如图中的图象(折线ABCDE)描述了一汽车在某一直线 上的行驶过程中,汽车离出发地的距离s(千米)和行驶时 间t(小时)之间的函数关系,根据图中提供的信息,给出 下列说法:①汽车共行驶了120千米;②汽车在行驶途中停 留了0.5
小时;③汽车在整个行驶过程中的平均速度为 3 80 千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度 在逐渐减少.其中正确的说法共有( )
A、1个 B、2个
C、3个 D、4个
二、填一填,画龙点睛(每小题 4分,共32分)
1.某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是 .
2. 一次函数y= -2x+4的图象与x轴交点坐标是 ,与y轴交点坐标是 与坐标轴围成的三角形面积是 。
3.下列三个函数y= -2x, y= - 14 x, y=(2 - 3 )x共同点是(1) ; (2) ;(3) .
4.如图,直线m对应的函数表达式是。
5.一次函数y=kx+b的图象如图所示,则k 0,b 0( 填“>”、“=”或 “<”)
6.写出同时具备下列两个条件的一次函数表达式(写出一个即可) .
(1)y随着x的增大而减小。
(2)图象经过点(1,-3)
7.某人用充值50元的IC卡从A地向B地打长途电话,按通话时间收费,3分钟内收费2.4元,以后每超过1分钟加收1元,若此人第一次通话t分钟(3≤t≤45),则IC卡上所余的费用y(元)与t(分)之间的关系式是 .
8.如图,已知A地在B地正南方3千米处,甲乙两人同时分 别从A、B两地向正北方向匀速直行,他们与A地的距离S(千米)与所行的时间t(小时)之间的函数关系图象如图所示的AC和BD给出,当他们行走3小时后,他们之间的`距离为 千米.
三、做一做,牵手成功(本大题共64分)
1.(9)为了保护学生的视力,课桌椅的高度都是按一定的关系配 套设计的。研究表明,假设学生的课桌高度为y(㎝),椅子的高度(不含靠背)为x(㎝),则y 应是x的一次函数。下表列出两 套符合的课桌椅的高度:
2、(9)随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势.
3、(9)在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。
下面是蟋蟀所叫次数与温度变化情况对照表:
4.(9)旅客乘车按规定可携带一定重量的行李,如果超过规定则需购行李票,设行李费y(元)是行李重量x(千克)的一次函数,其图象如图所示。 (1)求y与x之间的函数关系式; (2)旅客最多可免费携带多少千克行李?
5.(14)已知某一次函数的图象经过点(0, -3),且与正比例函数y= 12 x的图象相交于 点(2,a),求 (1) a的值。 (2)k、b的值。 (3)在同一直角坐标系中画出这两个函数的图象。 (4)这两个函数图象与x轴所围成的三角形面积。
6.(14)某单位急需用车,但又不需买车,他们准备和一个个体车或一国营出租公司中的一家签订月租车合同。设汽车每月行驶x千米,应付给个体车主的月租费为y1 元,应付给国 营出租公司的月租费为y2 元,y1 、y2 与x之间的函数关系(两条射线)如图所示,观察图 象回答下列问题: (1)每月行驶路程在什么范围内时,租用国营 出租公司的车合算? (2)每月行驶路程是多少时,两家的费用相同? (3) 每月行驶在什么范围内时,租用个体车合算? (4) 这个单位估计每月行驶的路程在2300千米 左右,则租用哪家车合算?
答案:
第一题:(1—8)A、D、B、C、C、C、D、A
第二题: 1、y=1.5x+1000
2、(2,0)(0,4)、4
3、都是正比例函数;都过二、四象限;y都随x的增大而减小;
4、y=-12 x+1
5、<;<
6、y=-x-2(符合即可)
7、y=50.6-t
8、1.5
第三题:
1、 y=1.6x+11;高为78.2
2、 y=-190x+382520; 2008
3、 y=7x-21; 12摄氏度
4、 y=1/6x-5; 30千克
5、 a=1; k=2,b=-3; 三角形面积3/4
6、 当x>2000租用国营出租公司的车合算;每月行驶路程是2000,两家的费用相同; 每月行驶x<2000时,租用个体车合算; 这个单位估计每月行驶的路程在2300千米左右,则租用国营出租公司的车合算.
【初中函数练习题及答案】相关文章:
6.函数单元练习题