教学目的:
使学生初步学会列方程解含有两个未知数的应用题。
教学过程:
一、复习。
1、让学生自己解答复习题。
果园里有桃树45棵,杏树的棵数是桃树的3倍。桃树和杏树各有多少棵?
2、口答下面各题。
(1)学校科技组有女同学X人,男同学是女同学的3倍,男同学有多少人?男女同学一共有多少人?男同学比女同学多多少人?
(2)育民小学五年级有学生X人,四年级学生的人数是五年级的1.2倍,四年级有学生多少人?四五年级一共有多少人?
二、新课。
1、教学例6。
(1)出示例6:果园里有桃树和杏树一共有180果,杏树的棵数是桃树的3倍。桃树和杏树各有多少棵?
让学生读题,说出已知条件,教师画出线段图(暂不标出X)
问:要求的是什么?(桃树和杏树)
要求的未知数有两个,根据题目的已知条件应先设哪一个为未知数为X?为什么?(设桃树为X棵,因为根据杏树的棵数是桃树的3倍,可知杏树为3X棵。)
根据学生回答,教师在线段图上标注X,如下图:
问:这道题数量间有什么样的相等关系?(桃树的棵数加上杏树的棵数等于180)
让学生列出方程:x+3x=180
如果有学生列出:(180-x)÷3=x或(180-x)÷x=3指出列成x+3x=180比较容易思考。而后面两种解法都需要逆思考。
当学生解出X=45后,让学生说一说这道题做完了没有,还要做什么,使学生明确:求出X,只求出了桃树的棵数,题还没有做完,还要求杏树的棵数3X是多少。求杏树的方法有两种:3×45或180-45
看课本的检验,让学生说出两个检验式子的含义和作用。指出:这样的检验比先检查方程,再把X的值代入方程检验,更有效,更简便。
(2)练习:
把例题中的第一个条件改成”果园里的杏树比桃树多90棵“
着重引导学生分析:改变一个条件,原来的解答哪些地方可以不动?哪些地方需要改,怎样改?(使学生明确:桃树和杏树的倍数关系没有变,所以设桃树的棵数为X,杏树的棵数用3X表示;因为现在题目给出它们的相差关系,即:杏树的棵数-桃树的棵数=90,所以列出的方程就是:3X-X=90)
学生自己解答,并进行检验。
小结:
列方程解答像上面这种已知两个倍数关系求两个数的应用题时,要注意以下三点:
1、题里有两个未知数,可以先选择一个设为X,另一个未知数用含有X的式子表示,列出方程。
2、解方程,求出X后,再求另一个未知数。
3、通过列式计算,检验两个得数的和及倍数关系是否符合已知条件。
三、巩固练习。
1、P126页做一做。
使学生明明确:它们的数量关系与例题相同,都是已知两个数的和与倍数关系,求这两个数;不同的是:例题两个数的倍数关系是整数,这里是小数。
2、做练习三十一的第1~5题。
课后小结: