二元一次方程组的数学教案

时间:2021-08-31

二元一次方程组的数学教案

  教学目标:

  1. 认识二元一次方程和二元一次方程组.

  2. 了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

  教学重点:

  理解二元一次方程组的解的意义.

  教学难点:

  求二元一次方程的正整数解.

  教学过程:

  篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

  思考:

  这个问题中包含了哪些必须同时满足的条件?设胜的'场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

  由问题知道,题中包含两个必须同时满足的条件:

  胜的场数+负的场数=总场数,

  胜场积分+负场积分=总积分.

  这两个条件可以用方程

  x+y=22

  2x+y=40

  表示.

  上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.

  把两个方程合在一起,写成

  x+y=22

  2x+y=40

  像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组.

  探究:

  满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.

  x

  y

  上表中哪对x、y的值还满足方程②

  一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.

  二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.

  例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,试求a、b的取值范围.

  (2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,试求a的值.

  例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值

  例3 已知下列三对值:

  x=-6 x=10 x=10

  y=-9 y=-6 y=-1

  (1) 哪几对数值使方程 x-y=6的左、右两边的值相等?

  (2) 哪几对数值是方程组 的解?

  例4 求二元一次方程3x+2y=19的正整数解.

  课堂练习:

  教科书第102页练习

  习题8.1 1、2题

  作业:

  教科书第102页3、4、5题