《平方差公式》这一节重点和难点就在于结构的不变性和字母的可变性。因此在教学设计思想是从让每一位学生理解和掌握公式结构的不变性和字母的可变性从而达到熟练运用的目的。只是在具体的教学手段和措施及侧重点上有所区别。虽然如此,王老师基本目标已经达到,也取得了初步成效,尤其是对易错点的侧重让学生记忆深刻效果更明显。
具体来说,成功之处我们都基本实现了教学目标,突出了教学重难点,教学过程环环相扣,题目设计逐层深入,及时反馈学习效果,精讲多练。基本实现了预想的效果。我认为该课成功之处主要体现在:
1、 导入新颖,从小故事出发,激发学生兴趣,给学生留下悬念,同时对平方差公式有了初步的感性认识,从而揭示课题。然后再通过一系列的探索和练习以及公式的几何解释,使学生对新知识的理解由感性认识到理性认识的过渡。
2、 选题合理、有针对性和层次性。在巩固练习中通过像(x+)(x-)这种简单的套公式题型逐渐转换到涉及带负号的变式像(-a–b)(-a+b),(-a-b)(b-a),(a+b)(b-a)这样的题型,通过各类变式和判断及找错的题型问题的暴露,及时处理。使得学生逐步加深对公式结构的理解和记忆。然后转回到课前给学生留下的疑问,最后实现创新,用简便方法计算像2002×1998.使得整个课堂容量大,充实。
3、 注重学生的训练和问题的暴露。要达到学生掌握知识,最终发展能力的目的,学生的思维就必须经过反复多次,循序渐进的实际应用,通过几组层层递进的例题练习让学生逐步理解公式中字母的可变性。最后达到对公式的全面和深刻的理解和掌握,使公式的运用得到升华。
4、本节课的重点和难点就是在于结构的不变性和字母的可变性。我就侧重运用公式时的易错点。不仅在训练期间多次强调的方式提醒学生易错点,相同项在前,相反项在后,结果才能用相同相的平方减去相反项的平方,平方时底是单项式但系数不是1或底数是多项式时不要忘记打上括号,而且在最后的小结中给学生总结更是让学生影响深刻。
5、对于整个教学环节,主张由学生通过讨论总结和发现问题、找出规律,一节数学课核心内容只有一点点,老师怎样总结出核心,抽象出本节课的内容特点,并用简捷、清晰的语言,将核心内容通过通俗,易懂,易记的方式交给我们的学生,使他们形成一种解决问题的能力.
总之这是一节很成功的课。