高二数学教学工作计划(4)

时间:2021-08-31

高二数学教学工作计划6

  一、学生基本情况

  X班共有学生56人,X班共有学生60人。X班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩没有尖子生,成绩特差的学生有4人,但若能杂实复习好函数部分,加上学生有很努力,将来前途无量。X班的学生学习气氛不及X班,但是有一批思维相当灵活的学生,但学习不够刻苦,学习成绩一般,但有较大的潜力,特差生比X班要少,此班若能好好的引导,进一步培养他们的学习兴趣,将来一定能赶超X班。但本期新课只有32课时,可以有充足的时间提前仅行高考复习

二、教学要求

  (一)知识要求

  1.1理解复数及其有关的概念。掌握复数的代数、几何、三角表示及其转换。

  1.2掌握复数的运算法则,能正确的进行复数的运算,边理解复数运算的几何意义。

  1.3掌握在复数集中解实系数一元二次方程和二次方程的方法。

  2.1掌握加法原理及乘法原理、并能用这两个原理分析和解决一些简单的问题。

  2.2理解排列、组合的意义,掌握排列数的计算公式和组合数的性质,并能用它们解决一些简单问题。

  2.3掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题。

  3.1掌握圆锥曲线的标准方程及其几何性质,会根据所给的条件化圆锥曲线。

  3.2理解坐标变换的意义,掌握利用坐标轴平移化简圆锥曲线方程的方法。

  3.3掌握弦问题求解方法。

(二)能力要求

  1、培养学生的观察力和数学记忆力。

  2、培养学生数学化的能力。

  3、培养学生的思维能力。

  4、培养学生的想象能力。

三、教材简要分析

  1、解析几何这一章是高考的重点。必须打下扎实的基础。

  2、复数的三角形式,是“三角”与复数的有机结合。

  3、复数的几何意义有益于培养学生的数形结合的能力。

  4、排列组合二项式定理高考分数不多,但是也是难点。由于实际运用相当广泛,高考要求提高,不容忽视。

四、重点与难点

  1、复数的三角形式、代数形式、几何形式、复数的几何意义是重点。

  2、复数的辐角与辐角主值、复数的减法的几何意义、两非零向量相等的条件,复数的开方是难点。

  3、排列组合综合问题、二项式系数的性质及运用是重点。

  4、排列组合综合问题及如何区分排列与组合是难点。

  5、轨迹问题是教学的重点与难点.

五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以“五段发现式教学”模式为主的教学方法,全面提高教学质量。

  4、积极参加与组织集体备课,共同研究,努力提高授课质量

  5、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

  6、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。

六、课时安排

  1、复数共26课时

  2、排列组合二项式定理16课时

  3、函数32课时

  4、参数方程与极坐标10课时

高二数学教学工作计划7

  一、学情分析

  1班共有学生75人,2班共有学生72人。2班学习数学的气氛较浓,但由于高一函数部分基础特别差,对高二乃至整个高中的数学学习有很大的影响,数学成绩尖子生多或少,但若能杂实复习好函数部分,加上学生又很努力,将来前途无量。若能好好的引导,进一步培养他们的学习兴趣。

二、教学目标

(一)情意目标

  (1)提供生活背景,使学生体验到不等式、直线、圆、圆锥曲线就在身边,培养学数学用数学的意识。

  (2)通过分析问题的方法的教学、通过不等式的一题多解、多题一解、不等式的一题多证,培养学生的学习的兴趣。

  (3)在探究不等式的性质、圆锥曲线的性质,体验获得数学规律的艰辛和乐趣,在分组研究合作学习中学会交流、相互评价,提高学生的合作意识

  (4)基于情意目标,调控教学流程,坚定学习信念和学习信心。

  (5)还时空给学生、还课堂给学生、还探索和发现权给学生,给予学生自主探索与合作交流的机会,在发展他们思维能力的同时,发展他们的数学情感、学好数学的自信心和追求数学的科学精神。

  (6)让学生体验发现挫折矛盾顿悟新的发现这一科学发现历程的幻妙多姿

(二)能力要求

  1、培养学生记忆能力。

  (1)在对不等式的性质、平均不等式及思维方法与逻辑模式的学习中,进一步培养记忆能力。做到记忆准确、持久,用时再现得迅速、正确。

  (2)通过定义、命题的总体结构教学,揭示其本质特点和相互关系,培养对数学本质问题的背景事实及具体数据的记忆。

  (3)通过揭示解析几何有关概念、公式和图形直观值见的对应关系,培养记忆能力。

  2、培养学生的运算能力。

  (1)通过解不等式及不等式组的训练,培养学生的运算能力。

  (2)加强对概念、公式、法则的明确性和灵活性的教学,培养学生的运算能力。

  (3)通过解析法的教学,提高学生是运算过程具有明晰性、合理性、简捷性能力。

  (4)通过一题多解、一题多变培养正确、迅速与合理、灵活的运算能力,促使知识间的滲透和迁移。

  (5)利用数形结合,另辟蹊径,提高学生运算能力。

  3、培养学生的思维能力。

  (1)通过含参不等式的求解,培养学生思维的周密性及思维的逻辑性。

  (2)通过解析几何与不等式的一题多解、多题一解、通过不等式的一题多证,培养思维的灵活性和敏捷性,发展发散思维能力。

  (3)通过不等式引伸、推广,培养学生的创造性思维。

  (4)加强知识的横向联系,培养学生的数形结合的能力。

  (5)通过解析几何的概念教学,培养学生的正向思维与逆向思维的能力。

  (6)通过典型例题不同思路的分析,培养思维的灵活性,是学生掌握转化思想方法。

  4、培养学生的观察能力。

  (1)在比较鉴别中,提高观察的准确性和完整性。

  (2)通过对个性特征的分析研究,提高观察的深刻性。

(三)知识要求

  1、掌握不等式的概念、性质及证明不等式的方法,不等式的解法;

  2、通过直线与圆的教学,使学生了解解析几何的基本思想,掌握直线方程的几种形式及位置关系,掌握简单线性规划问题,掌握曲线方程、圆的概念。

  3、掌握椭圆、双曲线、抛物线的定义、方程、图形及性质。

三、教材分析

  1、不等式的主要内容是:不等式性质、不等式证明、不等式解法。不等式性质是基础,不等式证明是在其基础上进行的;不等式的解法是在这一基础上、依据不等式的性及同解变形来完成的。不等式在整个高中数学中是一个重要的工具,是培养运算能力、逻辑思维能力的强有力载体。

  2、直线是最简单的几图形,是学习圆锥曲线、导数和微分等知识的的基础。,是直线方程的一个直接应用。主要内容有:直线方程的几种形式,线性规划的初步知识,两直线的位置关系,圆的方程;斜率是最重要的概念,斜率公式是最重要的公式,直线与圆是数形结合解析几何相互为用思想的载体。

  3、圆锥曲线包括椭圆、双曲线、抛物线的定义,标准方程,简单几何性质,以及它们在实际中的一些运用。椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的方程,并通过分析标准方程研究它们的性质。

四、重点与难点

  (一)重点

  1、不等式的证明、解法。

  2、直线的斜率公式,直线方程的几种形式,两直线的位置关系,圆的方程。

  3、椭圆、双曲线、抛物线的定义,标准方程,简单几何性质。

  (二)难点

  1、含绝对值不等式的解法,不等式的证明。

  2、到角公式,点到直线距离公式的推导,简单线性规划的问题的解法。

  3、用坐标法研究几何问题,求曲线方程的一般方法。

五、教学措施

  1、教学中要传授知识与培育能力相结合,充分调动学生学习的主动性,培育学生的概括能力,是学生掌握数学基本方法、基本技能。

  2、坚持与高三联系,切实面向高考,以五大数学思想为主线,有目的、有计划、有重点,避免面面俱到,减轻学生的学习负担。

  3、加强教育教学研究,坚持学生主体性原则,坚持循序渐进原则,坚持启发性原则。研究并采用以发现式教学模式为主的教学方法,全面提高教学质量。

  4、坚持学法研讨,加强个别辅导(差生与优生),提高全体学生的整体数学水平,培育尖子学生。

  5、加强数学研究课的教学研究指导,培养学识的动手能力。

  6、积极参加与组织集体备课,共同研究,努力提高授课质量

  7、坚持向同行听课,取人所长,补己之短。相互研究,共同进步。

六、课时安排

  本学期共81课时

  1、不等式18课时

  2、直线与圆的方程25课时

  3、圆锥曲线20课时