算术平方根说课稿
《算术平方根》是是学习实数的准备知识,为学习二次根式作铺垫, 提供知识积累。下面是小编为你整理了“算术平方根说课稿”,希望能帮助到您。
一、教材分析
1、说教材
《算术平方根》是九年制义务教育人教版七年级下册第十章《实数》的第一节内容,与旧教材相比,它在这里先讲算术平方根再去学习平方根。为后学习平方根奠定一定基础,同时也把数从有理数拓展到无理数。这一节的教材编写思路是由浅入深,循序渐进,引导学生观察、实验、猜测,逐步培养学生的逻辑推理能力。
2、教学目标和要求
根据新课标的要求及七年级学生的认知水平,我制定本节课的教学目标如下:
知识技能 : 了解算术平方根的概念,会求正数的算术平方根。
数学思考 : 通过探索 的大小,培养估算意识。
解决问题 : 通过拼正方形的活动,体验解决问题方法的多样性,展 形象思维。
情感态度 : 通过学习算术平方根,认识数学与生活的密切关系。通过探究活动,锻炼意志,建立自信心,提高学习热情。
3、教学的重点与难点
重点:算术平方根的概念,感受无理数。
难点:探究 大小的过程
二、说教学理念
培养学生的合作探究精神,自主学习、创新精神是新课程标准的重要理念。课堂教学中渗透了数学的转化思想,数型结合思想,体现新课程标准中的知识与能力、情感与态度,过程与方法的三统一。
三、说教法
本节课结合七年级学生的理解能力、思维特征和依赖直观图形学习数学的年龄特征,采用多媒体辅助教学,将知识形象化、生动化、具体化,在教学中采用启发式、师生互动式等方法,充分发挥学生的主动性、积极性,特别是通过拼图法得出 。再通过渐进法得出 的大小。教师采用点拨的方法,启发学生主动思考,尝试用多种取值来得出 的大小,进而引出无理数。使整个课堂生动有趣,极大限度地培养了学生观察问题、发现问题、归纳问题的能力和一题多解,一题多法的'创新能力,使课本知识成为学生自己的知识。
四、说学法
课堂中逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
五、说教学过程
(一) 创设情境、激发情趣
通过工厂要做一批面积为4平方米和2平方米的正方形模板,老板为了赶产品提出来加工资,由面积是2平方米的正方形模板的边长。巧妙的引入算术平方根。使学生能认识到学好本节的作用,又能激发他们的学习兴趣。
(二) 动手操作、初步感知
通过一个正数的平方,求出面积为1、4、9、16、25、4/25的正方形的边长,学生很轻松地就可以答出。进而巧妙的介绍算术平方根的概念,进入新知。
(三) 实践说明、深入新知
在进入算术平方根的概念之后,我们去试作加深对算术平方根的知识,学生在老师的引导之下的做一相关的例题。
(四) 巩固练习、
通过习题 巩固算术平方根的知识。
(五) 启发诱导、实际运用、拓展新知
让学生动手去完由两面积为1的小正方形去拼一面积为2的大正方形,并求出大正方形的边长。由所学知识大正方形的边长应为 。自然地过渡到探究 大小,让同学们先估计 的大小。教师从中他们估计不同的值通过小组讨论,让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法,从中获益,增加了学生的合作探究精神,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力,培养学生的一题多思,团结合作的创新精神。(在此探究过程中要用到渐近法)进而得出 是无理数。
(六) 反馈矫正、作业
通过课堂练习,强化学生对这节课的掌握,为此我设计了两道习题,第一道是开放题,这道题有助于帮助学生解决生活中的实际问题,可以激发学生学习数学的热情。第二道题采取了客观题的形式,难度中等,使学生掌握概念并能简单运用,可以提高学生的说理能力,可挑选中等成绩的学生起立回答。便于了解学生掌握的总体情况。
六、课堂小结
采用用先让学生归纳补充,然后教师再补充的方式进行:这节课我们学了什么知识?你有什么收获?充分发挥学生的主体意识,培养学生的语言概括能力。
总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主探究,合作学习来主动发现,实现师生互动。通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好 的数学素养和学习习惯,让学生学会学习,学会生活才能使自己真正成为一名受学生欢迎的好老师。
一、教学目标
1.理解一个数平方根和算术平方根的意义。
2.理解根号的意义,会用根号表示一个数的平方根和算术平方根。
3.通过本节的训练,提高学生的逻辑思维能力。
4.通过学习乘方和开方运算是互为逆运算,体验各事物间的对立统一的辩证关系,激发学生探索数学奥秘的兴趣.
二、教学重点和难点
教学重点:平方根和算术平方根的概念及求法。
教学难点:平方根与算术平方根联系与区别。
三、教学方法
讲练结合。
四、教学手段
多媒体
五、教学过程
(一)提问
1、已知一正方形面积为50平方米,那么它的边长应为多少?
2、已知一个数的平方等于1000,那么这个数是多少?
3、一只容积为0.125立方米的正方体容器,它的棱长应为多少?
这些问题的共同特点是:已知乘方的结果,求底数的值,如何解决这些问题呢?这就是本节内容所要学习的。下面作一个小练习:填空
1、( )2=9 ( )2 =0.25
2、( )2=0.0081
学生在完成此练习时,最容易出现的错误是丢掉负数解,在教学时应注意纠正。
由练习引出平方根的概念。
(二)平方根概念
如果一个数的平方等于a,那么这个数就叫做a的平方根(二次方根)。
用数学语言表达即为:若x2=a,则x叫做a的平方根。
由练习知:±3是9的平方根。
±0.5是0.25的平方根。
0的平方根是0。
±0.09是0.0081的平方根。
由此我们看到 3与-3均为9的平方根,0的平方根是0,下面看这样一道题,填空:
( )2=-4
学生思考后,得到结论此题无答案。反问学生为什么?因为正数、0、负数的平方为非负数。由此我们可以得到结论,负数是没有平方根的。下面总结一下平方根的性质(可由学生总结,教师整理)。
(三)平方根性质
1、一个正数有两个平方根,它们互为相反数。
2、0有一个平方根,它是0本身。
3、负数没有平方根。
(四)开平方
求一个数a的平方根的运算,叫做开平方的运算。
由练习我们看到 3与-3的平方是9,9的平方根是 3和-3,可见平方运算与开平方运算互为逆运算。根据这种关系,我们可以通过平方运算来求一个数的平方根。与其他运算法则不同之处在于只能对非负数进行运算,而且正数的运算结果是两个。
(五)平方根的表示方法
一个正数a的正的平方根,用符号“ ”表示,a叫做被开方数,2叫做根指数,正数a的负的平方根用符号“- ”表示,a的平方根合起来记作 ,其中 读作“二次根号”, 读作“二次根号下a”。根指数为2时,通常将这个2省略不写,所以正数a的平方根也可记作“ ”读作“正、负根号a”.
练习:用正确的符号表示下列各数的平方根:
①26②247③0.2④3⑤
解:①26 的平方根是
②247的平方根是
③0.2的平方根是
④3的平方根是
⑤ 的平方根是
【算术平方根说课稿】相关文章:
6.《平方根》说课稿