今天我教学《两位数加一位数(进位)》,整堂课教学以三步导学模式进行,在检测导结环节中统计发现孩子们练习的正确率很高,只有个别孩子在个别题目中出错。面对着如此的局面我本应该高兴,可是总感觉好像还缺点什么。课后我对本节课内容进行了反思,现将本节课的成功与困惑总结如下:
成功的地方有:
1、上课开始,通过题组的形式复习两位数加减整十数和一位数的口算,唤起小朋友对计算的兴趣,同时通过询问“32+4”你是怎么算的,复习算法,为孩子能够把算法迁移到今天的学习中埋下伏笔。
2、数学教学专家经常讲:提出问题往往比解决问题更重要。出示教学主题图后,我采用了较为开放的方式请孩子自由选择信息进行提问。这一方面训练了孩子选择信息的能力,同时也锻炼了孩子的提问能力。孩子们能够全面的提出问题并正确列式。
3、在练习的处理上,“做一做”有三组同类练习。我没有一次性的全部出示完毕,而采取分步的策略,先出示第一组4+8,34+8,54+8,84+8,先请孩子轻声的读一读,然后独立计算。我认为在计算教学中,通过题组练习引导孩子去发现规律,不是为了发现而发现,而是在发现规律后能够运用所发现的规律去提高运算速度。因此,在接下来的两组练习中孩子完成的很顺利,正确率很高。这也体现了学以致用。
虽然有一些优点,但对于本课的教学仍有一些解不开的困惑。
1、在教学24+6和24+9时对教材进行了一些改动。没有让孩子通过把摆好的小棒圈一圈的操作来理解24+6和24+9的计算方法,以分解式取而代之。通过计算24+6的分解式,在计算24+9时孩子很好的进行了迁移,能够正确的写出分解式并进行计算。可是这样一来,却钳制了孩子的思维。在课前我隐约的认识到了这种教学策略的局限,因此,在教学完24+9时,我又问孩子,除了这样的方法,还有其他的计算方法吗?此时孩子的回答:可以通过使用计数器来计算,可以通过竖式来计算等等,始终没有出现教材中的:先算24+6=30,再算30+3=33。突然想起来郑毓信教授在一本书里举到的一个例子:一个母亲带领幼儿园的女儿和三年级的儿子去吃饭,每位198元,轮到买单时母亲问孩子应该付多少钱?儿子说,“给我纸和笔,我需要通过计算得到”,而女儿通过简单的口算得到答案,可是几年以后同样的场景同样的问题,儿子、女儿的回答却是惊人的一致:“给我纸和笔”!在我心中最优质的教学是要发散孩子的思维。可是在我们现如今的教学,(包括郑教授的例子)通过教学的优化却在紧致、缩小孩子的思维,我今天的教学也是。在我的这样一种引导性教学中,孩子的思维窄化了。面对此种情况,我有些担心,有些困惑,不知道谁对谁错? 2、摆小棒的价值何在?在教学24+6时,我要求孩子通过摆小棒的方法来求得正确的答案。在操作的过程中发现有些孩子不会摆小棒,或者不愿摆小棒,摆小棒流于形式,成了教学过程中的花架子,对于教学内容的理解作用不大。本来,教材设计摆小棒的环节,是希望通过摆小棒来理解24+6的算理与算法。可是,在我们学校绝大部分孩子在学习两位数加一位数(进位)之前都能够熟练的进行计算,通过调查发现,很多孩子是自觉的迁移了两位数加一位数(不进位)的计算方法,即采用分解式的方法。孩子已经超越了实物操作的阶段。在这种情况下,摆小棒还有没有必要?如果有必要它的价值何在呢?思前想后,我给自己的教学找了这样一个理由:摆小棒在我的教学中起到一个验证的作用,它的价值就在于检验由已知迁移来的计算方法是否正确有效。小棒的作用由帮助理解变为了帮助验证。
一节看似简单的计算课,却给我带来那么多的疑惑与不解,感叹小学一年级的教学也不简单啊!惟有通过“实践——读书——再实践”来丰富自己,才能变的通达!