假分数化成整数或带分数这一内容教材先要求学生把假分数化成整数,通过观察化成整数的假分数,它们的分子与分母有什么关系?得到结论:能化成整数的假分数,分子都是分母的倍数。接着,引出话题:分子不是分母的倍数的假分数可以写成带分数,带分数就是整数与一个真分数合成的数。至此,自然产生怎样把假分数化成带分数这样的问题,就是教材安排的例题8:怎样把11/4化成带分数?。
怎样把11/4化成带分数?解决该问题的方法呈多元化趋势。⑴画图。画图的直观理解让好多学生喜爱,教材也介绍了该方法;⑵拆数。根据假分数的意义直接推想,因为4个1/4是1,8个1/4是2,11可以分成8和3,所以11/4可以看成2与3/4合成的数,即2又3/4;⑶除法。根据分数与除法的关系,加上画图、拆数方法和分子是分母的倍数的假分数转化成整数方法的支撑,学生也尝试用除法将假分数转化成带分数,确信是可行的。除法的过程中,让学生明确除得的商是带分数的整数部分,余数是带分数的分子,而分母不变;⑷递减。11/4-4/4=7/4,7/4-4/4=3/4,所以是2又3/4;⑸倍数。找4的倍数4、8、12,11比12小1,比8大3,所以是2又3/4。
假分数转化成带分数的五种中,除法是一般的方法,也就是每个学生都要掌握的方法。但除法的方法比较抽象,理解用除法的方法将假分数转化成带分数,除了分数和除法的关系是数学依据外,离不开其他四种直观方法的支撑,例如递减、画图方法中含有除法产生的稚型, 根据假分数的意义直接推想的方法则和除法的方法明显是相通的。
既然五种方法是相通的,相互支撑的,那么就让它们一起存在吧,当然除法的方法是学生掌握的重点!