关于《多边形的面积》的教学反思
本单元的主要教学内容包括:平行四边形的面积、三角形的面积、梯形的面积以及组合图形的面积。多边形面积的计算是在学生学习了图形的平移与旋转,掌握了这些平面图形的特征,以及长方形,正方形面积计算公式的基础上进行教学的。
回顾08学年五年级学生学习本章时,学生的问题主要有:
1、学生多边形面积公式的推导过程表达不清。课堂上每一个多边形面积公式的推导过程都是比较清晰的,无论是把平行四边形转化成长方形,还是把两个完全相同的三角形(或梯形)拼成平行四边形,从操作、比较,到发现转化前后图形之间的联系,最后得出计算公式,整个过程环节分明,条理清楚,学生都能很快掌握课堂上所学的内容。但是,课后发现,有的学生对计算公式记得很牢,对多边形面积公式的推导过程模糊,表达不清。
2、部分学生不会分辨底、高(不能正确画出高),进行组合图形面积计算时候,不能很好利用平行四边形对边相等、不能创造性地通过虚线清晰地把图形进行分解,从而引起计算错误。
3、审题不清,经常不注意单位的异同,面积计算结果经常用长度单位。
为了有效地解决类似问题,我主要采取了以下措施:
1 、重视动手操作、观察与交流汇报
本单元面积公式的推导都是建立在学生数、剪、拼、摆的操作活动之上的,所以操作是本单元教学的重要环节。教师既要做好引导,又要注意不要包办代替,一定要学生在独立思考和合作交流的基础上进行操作,却忌由教师带着做。
2 、引导学生探究,渗透转化思想。
本单元面积的.推导都采用了转化的方法。在本单元的教学中,以学生的探究活动为主要形式,教师加强指导和引导。通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法。利用讨论和交流等形式,要求学生把自己操作转化推导的过程叙述出来,以发展学生的思维和表达能力。
3 、注意培养学生用多种策略解决问题的意识和能力。
运用转化的方法推导面积计算公式和计算多边形面积,可以有多种途径和方法。教师要鼓励学生从不同的途径和角度去思考和探索解决问题。引导学生通过观察,作虚线等方法,清晰地认识一个简单图形、组合图形的构成,并能正确地进行计算。
4、在教学中培养审题习惯、检查习惯等等
学生出现审题不清,单位出错,原因主要有两点:一是学习习惯不好;二是学习态度不端正。要改变这样的情况并非一朝一夕所能成的,教师应有意识地培养学生认真审题的意识,纠正不良习惯,并强调学生完成计算后,应该对答案和单位进行检查,从而杜绝不写单位和写错单位的不良行为。
【关于《多边形的面积》的教学反思】相关文章: