高一数学上册集合单元测试题答案

时间:2021-08-31

  一、选择题(每小题6分,共30分)

  1、D 2、D 3、C 4、C 5、B

  二、填空题(每小题6分,共30分)

  6、已知x2+bx+c<0的解集是{x|1<x<3},则b+c等于____-1_____。

  7、已知集合A={a, ,1},B={a2,a+b,0},若A B且B A,则a= -1 ,b=__0____。

  8、不等式 |的解集为__ ___________。

  9、已知集合 满足:若 ,当 时,集合 。(用列举法写出集合中的元素)

  10、已知集合 ,若 ,则 的取值范围是

  三、解答题(每小题20分,共40分解答应写出必要的文字说明、证明过程或演算步骤)

  12.不等式 与x2 –3(a+1)x+2(3a+1) 0的解集分别为A , B ,

  其中a∈R.,求使 的a 的取值范围 。

  解:解: x-

  即 2a x a +1 {x|2a x a +1} (5分)

  由 x -3(a+1)x+2(3a+1) 0 得 (x-2)[x-(3a+1)] 0

  令 (x-2)[x-(3a+1)]=0 得 x =2 x =3a+1

  当2〈3a+1,即a> 时, B={x|2 x 3a+1}

  当2〉3a+1,即x< 时,B={x|3a+1 x 2}

  当2=3a+1,即a= 时,B={2} (10分)

  要使A B,当A= 时,a +1<2a,此时(a-1) <0,不可能出现此种情况。所以A ,

  当a> 时, 2a 且a +1 3a+1,所以1 a 3.

  当 a< 时, 2a 3a+1且a +1 2,所以a=-1.

  当 a= 时,2a=2且a +1=2,所以a .

  综上所述:a的取值范围是{a|1 a 3或a=-1 }(20分)