有50个表面涂有红漆的正方体,它们的棱长分别是1厘米、3厘米、5厘米、7厘米、9厘米、……、99厘米,将这些正方体锯成棱长为1厘米的小正方体,得到的小正方体中,至少有一个面是红色的小正方体共有多少个?
分析与解棱长为1厘米涂有红漆的小正方体,不用锯,就是棱长1厘米的小正方体,它当然是至少有一个面是红色的.小正方体了。
将棱长为3厘米的涂有红漆的小正方体,锯成棱长为1厘米的小正方体,共得到33个,其中没有涂红漆的共(3-2)3个。
将棱长为5厘米的涂有红漆的小正方体锯成棱长为1厘米的小正方体,共得53个,其中没有涂红漆的共(5-2)3个。
将棱长为7厘米的涂有红漆的小正方体锯成棱长为1厘米的小正方体,共得73个,其中没有涂红漆的共(7-2)3个。
由以上分析、计算发现,将校长为1厘米、3厘米、5厘米、7厘米的四个正方体锯成棱长为1厘米的小正方体后,得到至少有一个面为红色的小正方体共有
13+33-(3-2)3+53-(5-2)3+73-(7-2)3
=13+33-13+53-33+73-53
=13+33+53+73-13-33-53=73=343(个)
按照这样的规律可得,将棱长为1厘米、3厘米、5厘米、7厘米、9厘米、……、99厘米这50个正方体锯成棱长为1厘米的小正方体后,得到至少有一个面为红色的小正方体共有:
13+33+53+73+93+……+973+993-13-33-53-73-93-……-973=993=970299(个)
答:至少有一个面是红色的小正方体共有970299个。
【精编小学奥数经典试题及答案】相关文章:
4.奥数试题及答案